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Abstract

Study Objectives:  We propose a unique device-independent approach to analyze long-term actigraphy signals that can accurately quantify the severity of periodic 

limb movements in sleep (PLMS).

Methods:  We analyzed 6–8 hr of bilateral ankle actigraphy data for 166 consecutively consenting patients who simultaneously underwent routine clinical 

polysomnography. Using the proposed algorithm, we extracted 14 time and frequency features to identify PLMS. These features were then used to train a Naïve–

Bayes learning tool which permitted classification of mild vs. severe PLMS (i.e. periodic limb movements [PLM] index less than vs. greater than 15 per hr), as well as 

classification for four PLM severities (i.e. PLM index < 15, between 15 and 29.9, between 30 and 49.9, and ≥50 movements per hour).

Results:  Using the proposed signal analysis technique, coupled with a leave-one-out cross-validation method, we obtained a classification accuracy of 89.6%, a 

sensitivity of 87.9%, and a specificity of 94.1% when classifying a PLM index less than vs. greater than 15 per hr. For the multiclass classification for the four PLM 

severities, we obtained a classification accuracy of 85.8%, with a sensitivity of 97.6%, and a specificity of 84.8%.

Conclusions:  Our approach to analyzing long-term actigraphy data provides a method that can be used as a screening tool to detect PLMS using actigraphy devices 

from various manufacturers and will facilitate detection of PLMS in an ambulatory setting.
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Statement of Significance

Periodic limb movements in sleep may have implications for health. Measurement of periodic limb movements during sleep using in-laboratory polysomnography 

is cumbersome and expensive; ambulatory techniques may facilitate screening of large populations efficiently and also allow for serial testing across multiple 

nights. This study provides an automated technique that can rapidly analyze actigraphy data and quantify periodic limb movements of sleep. One advantage of 

this technique is that it does not depend on a specific actigraphic device and therefore could be used in any actigraphy (regardless of manufacturer).
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Introduction

Periodic limb movements in sleep (PLMS) affect a large portion 
of the general population [1], but the clinical significance of 
this motor phenomenon remains unclear. PLMS have been re-
ported to be associated with cardiovascular disease [2, 3], small 
vessel disease of the brain [4, 5], and increased mortality in renal 
failure [6] but their significance requires further study. PLMS 
usually occur during non-REM sleep and are quantified using 
the periodic limb movement (PLM) index [7, 8], which is defined 
as the ratio of total number of periodic limb movements to the 
total number of hours in sleep. Furthermore, PLMS can be cat-
egorized as mild (PLM index no greater than 15 movements per 
hour) or severe (PLM index above 15 movements per hour) [7].

Several prior studies have validated against in-laboratory 
polysomnography (PSG) the use of actigraphy placed on the 
lower extremities for the detection of PLMS (summarized in 
Table 1) [9–15]. Advantages of actigraphy over PSG include the 
opportunity to continuously record data for more than 24  hr 
without the need to replace sensors or batteries [9, 16–18], as 

well as the opportunity to evaluate patients in their natural 
home environments [9]. Unfortunately, the actigraphs available 
at any time on the market are rapidly changing, which necessi-
tates the development of a device-independent algorithm that 
can detect PLMS accurately and quantify their severity.

Recently published clinical guidelines that evaluated the use 
of actigraphy for the detection of sleep disorders strongly recom-
mended that clinicians should not use actigraphy instead of PSG 
for the evaluation of PLMS in sleep [19, 20]. The PLMS section of 
these guidelines was based on a review of three prior studies 
[10, 12, 15] whose results demonstrated that actigraphy-derived 
PLM indices exhibited low correlations with PLM indices de-
rived from PSG. Although these guidelines advised against using 
actigraphy for the detection of PLMS, it should be noted that the 
conclusions were derived from studies that used limited statis-
tical techniques (e.g., correlations and Bland Altman plots); fur-
thermore, the guidelines only evaluated studies that reported a 
mean (±SD) PLM index attributable to actigraphy and another 
PLM index attributable to PSG. As a result, this approach did not 

Table 1.   Prior studies that have examined the use of actigraphy to detect PLMS

Authors Actigraph Settings and placement Study population
Findings 
(sensitivity, specificity) PLMI cut-off Analysis method Notes

Athavale  
et al. 2017 [9]

Philips Respironics Actical  
(Philips Respironics, 2015)

Sampled 32 Hz; 2 s epochs 
Bilateral ankles

96 consecutive patients of a sleep  
laboratory (52.2 ± 15.0 yr; 57 M, 39 F)

5/hr: Sn = 0.803,  
Sp = 0.737 

15/hr: Sn = 0.841,  
Sp = 0.571

5/hr, 15/hr Signal processing and machine learning.  
Trained and tested a Naïve–Bayes  
classifier using actigraphy data features,  
to determine PLM severity and classify patients

 

Kobayashi et al.  
2014 [10]

PAM-RL Sampled 40 Hz 
Bilateral ankles

41 Japanese patients with suspected  
restless leg syndrome  
(52.1 ± 16.1 yr, 14 M, 27 F)

r = .781 (p < .001)  
Sn = 0.824, Sp = 0.708

≥15/hr Use PAM-RL software to determine  
PLM thresholds and compute PLM Index. Compare  
with PSG using statistical tests – Bland–Altman  
plot, Wilcoxon-signed rank test, Pearson product  
moment correlation and ROC curve

 

Dias et al. 2013 [11] Actigraph GT3X (Actigraph  
LLC, Pensacola Florida, USA)

Sampled 30 Hz 
Both legs at ankle level

2 subjects referred for a sleep  
study with suspect sleep apnea 

Sn/Sp NRSimilarity 
rates = .008, .005

NR Perform visual similarity measurements between  
PSG and actigraphy data to detect regions of PLM  
activity in actigraphy plot. Used an open source  
software – Movyzer which includes a similarity  
function to compare actigraphy and PSG.

 

Gschliesser et al.  
2009 [12]

PAM-RL (IM Systems, USA); 
Actiwatch: (Cambridge 
Neurotechnology, Ltd.) DTS

Actiwatch: Sampled 32 Hz. 
Bilateral foot dorsa 
PAM-RL: Sampled 10 Hz Default 

settings 
Bilateral ankles

24 consecutive patients  
(57.5 ± 12 y; 18 M, 6 F); of these 10  
(60.9 ± 12.0 yold; 7 M, 3 F) 
underwent additionalmonitoring  
with PAM-RL

Sn/Sp 
NRActiwatch:r = 0.835,  
p < 0.001 PAM-
RL:r = 0.939, p < 0.001

NR Use of vendor software to detect PLMS from  
actigraphy data. Further comparison with PSG was 
done using SPSS statistics software. Tests included 
Wilcoxon rank sum test, Spearman correlations and 
Bland Altman plots

Individual subject datain 
supplement

Kemlink  
et al. 2008 [13]

AW-64 Actiwatch (Cambridge 
Neurotechnology Ltd., 
Cambridge UK); DTS

32 Hz resolution; 2 s epochs 
Bilateral ankles and dorsum of 

foot

40 consecutive nights in 37  
adult patients  
withRLS and/or SRBDs  
(age50.8 ± 12.1 y; 29 M, 8 F)

AnkleSn = 0.67, Sp = 0.95 
ToesSn = 1.00; Sp = 0.77

Base of the  
big toe 7.6/
hAnkle5/h

Manual analysis of actigraphy data using vendor  
software, and statistical comparison with PSG data. 
Spearman’s correlation test) and comparative tests 
(pairwise sign test) were employed to analyze  
the data. The least square non-parametric empirical 
estimation was used to study relationship between 
parameters obtained by PSG and actigraphy.

Three patients monitored for two 
nights; PSG limb movements 
scored independent of  
respiratory events

King  
et al. 2005 [14] 

Actiwatch (Cambridge Neurotechnology  
Ltd./Mini Mitter Co., Inc.); DTS

Sampling rate 32 Hz; 2 s  
epochs 

Dorsum of each foot

50 technically acceptable  
overnight  
hospital PSG  
(demographics unclear)

5/hr: Sn = 0.906,  
Sp = 0.833 25/hr: 
Sn = 1.00, Sp = 0.971 50/
hr: Sn = 1.00, Sp = 0.978

≥5, ≥25, ≥50 Visual comparison and analysis of actigraphy  
data with PSG readings using vendor software and 
Bland–Altman analysis

SPT defined by PSG for both ACT 
and PSG-derived PLM indices; 
PSG-derived limb movements 
scored independent of respira-
tory events

Sforza  
et al. 2005 [15]

PAM-RL (SOMNOmedics GmHb,  
Germany); DTS

Sampling rate 40/s 
Bilateral ankles

43 consecutive adult patients  
(57.6 ± 3.7 yr old; 33 M and 10 F)  
referred for PSG for insomnia  
and/or EDS;

Sn = 0.88, Sp = 0.76 
r = 0.87, p < .0001

10/hr Actigraphy data analyzed using vendor algorithm,  
and then compared statistically with PSG to  
determine closeness in PLM indices.  
Use of Pearson’s correlation test and  
Bland–Altman analysis technique.

Individual subject data available; 
reported findings based on 50 
studies
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consider the use of advanced signal analysis techniques to de-
tect PLMS from actigraphy.

Our present research work intends to address this gap and 
we present a novel approach to actigraphy-based evaluation of 
PLMS using computer-aided analysis of actigraphy signals.

Methods

Preliminary work

In our initial set of experiments, we conducted a successful clin-
ical validation study for the detection of PLMS using time and 
frequency features extracted from bilateral, short-duration (80–
100 s) actigraphy signals [9]. The features were used to model a 
Naive–Bayes classifier, which yielded a cross-validated classifi-
cation accuracy of 78.9% along with a sensitivity of 80.3% and 
specificity of 73.7% when classifying PLMS [9].

From our preliminary signal analyses and a review of 
actigraphy applications, we found that the greatest amount of 
human activity captured using generic accelerometry devices 
occurs in the 0.3–6 Hz frequency range [21–24]. The proposed 

algorithm in this study aims to be device-independent by 
employing human activity–specific filtering parameters to 
generic actigraphy signals. In other words, the proposed al-
gorithm could be applied not only to the Philips Respironics 
Actical [25] used in our initial studies, but could also be used 
for other actigraphs. In this study, we apply the proposed algo-
rithm to long-term actigraphy signals with the goal of accurately 
detecting PLMS and classifying their severity. The flowchart in 
Figure 1 illustrates a high-level description of the proposed 
methodology in this study.

Data acquisition and preprocessing

In the current study, bilateral ankle actigraphy data were col-
lected from 166 consecutively consenting patients who simul-
taneously underwent in-laboratory PSG at a sleep laboratory. 
Studies were obtained for a variety of clinical indications, 
most commonly for assessment of sleep-disordered breathing. 
In-laboratory PSG (Compumedics Neuroscan, Australia) was con-
ducted using standard recording and scoring methods [26]. The 
actigraphy data were acquired by placing two generic tri-axial 
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accelerometer devices (GC Data Concepts USB Accelerometer 
Model X16-mini) [27] on each ankle. In comparison to the pre-
viously used Actical [25], the Model X16-mini [27] has enhanced 
data acquisition, storage space, universal compatibility, and a 
user-selectable sampling rate.

In our study, we recorded the actigraphy signals at a sam-
pling rate of 25 Hz for the entire sleep duration of 6–8 hr. Both 
the PSG and actigraphy data were clipped between the “Lights 
off” and “Lights on” times by a registered sleep technologist, who 
monitored the PSG recordings during the entire night for each 
patient. Compared with our initial experiments [9], in the cur-
rent study, we did not perform any signal truncation but rather 
retained the entire 6–8 hr of actigraphy signal for analysis.

As has been previously reported [4], sleep was manually 
staged according to criteria from the American Academy of 
Sleep Medicine (AASM) [26]. All studies were interpreted by a 
diplomate of the American Board of Sleep Medicine and scored 
by a registered polysomnographic technologist. Limb move-
ments were scored according to the AASM scoring rules [26], and 
we used a nasal pressure transducer to exclude upper airway 
resistance. Limb movements were not scored within 0.5 s of a 
respiratory event. The PLM index for each lower extremity signal 
(i.e. 332 lower extremity signals for 166 participants) was subse-
quently used as the label for our algorithm development.

Although the currently available devices tend to sample 
actigraphy data at 16 Hz and/or above, the prior literature sug-
gests that body movements are typically captured under the 
6 Hz frequency band, and high-frequency noise distorts the 
signal around the sampling frequency [21, 22]. To address this 
and obtain meaningful information from the actigraphy signals, 
we performed the following preprocessing steps before feature 
extraction:

	•	 Clipping raw actigraphy signal as per “Lights off” and “Lights 
on” times. No additional truncation was performed, and the 
entire actigraphy signal (6 to 8 hr long) was used for further 
analysis.

	•	 Detrending raw signal and removal of DC (direct current) 
artifact from each axis-signal by subtracting individual 
sample values from the corresponding mean value of each 
axis-signal.

	•	 Next, to remove high-frequency noise and artifacts from the 
signal, we passed it through a digital low pass Butterworth 
filter with a passband of 0.4 Hz and a stopband of 1.6 Hz, 
thus capturing all critical movement activity [21, 22].

	•	 Finally, we obtained the vector magnitude [21–24] of the tri-
axial signal by computing the root mean square (RMS) value 
of the axial components, as

	 Sv =
»
xf 2 + yf 2 + zf 2.�

Based on prior literature, when capturing and analyzing tri-axial 
movements, each axial component exhibits variability in amp-
litude, and analyzing them individually to detect a correct pat-
tern would prove to be computationally tedious and inaccurate 
[21–24]. The vector magnitude represents compounded axial 
movements, which is better for signal analysis and pattern 
identification. Note that, in addition to reducing the number of 
computations, the vector compounded version also enhances 
the signal-to-noise ratio [23, 24]. In other words, the vector mag-
nitude is a nonlinear mathematical operation that combines 
motor activity from three dimensions, while keeping the time-
instant per movement as constant. This means that, as shown 
in the aforementioned equation, the vector magnitude of a 
three-dimensional actigraphy signal only combines the ampli-
tudes in each direction at a given time-instant.

These preprocessing steps were applied on all actigraphy sig-
nals, for both the left and right legs, thus yielding a total of 332 
individual lower extremity signals. Following this, we created 
two groups by prelabeling each signal as either as mild (PLM 
index no greater than 15 movements per hour) or severe (PLM 
index equal to or above 15 movements per hour), irrespective of 
which leg (i.e. left vs. right) each signal belonged to. Using this 
scheme, we obtained a total of 247 mild and 85 severe signals 
for our study.

Feature extraction and pattern classification

From each 6 to 8  hr long-filtered and vector-compounded 
actigraphy signal, we extracted the following 14 time and fre-
quency features: mean, standard deviation, variance, RMS value, 
maxima, peak to peak difference, peak to RMS ratio, peak to 
average ratio, peak to average power ratio, median frequency, 
mean frequency, signal to noise and distortion ratio, band 
power, and periodicity index (PI). Except for the PI, the remaining 
13 features were computed using standard mathematical func-
tions available in MATLAB. The PI of an actigraphy signal was 
computed as [28]

	
Periodicity Index, PI =

Manually scored PLM index
Number of intervals between PLM events

.�

A valid PLM interval was defined as a period of inactivity dis-
rupted by a limb movement [7, 8, 28]. In our study, we found the 
number of intervals (or periods of inactivity) in the segments 
between true PLMS (i.e. limb movements whose amplitude was 
greater than or equal to the average amplitude of the actigraphy 
signal) using the following relationship:

Number of intervals between PLM events = ([Number of true limb movements]− 1) .�

It should be noted that the computation of the PI as indicated 
by the aforementioned equation was based on the data avail-
able to us from the registered technologist. The absence of each 
candidate’s limb movement measurements motivated us to es-
timate the number of true limb movements using the number of 
intervals between true PLM movements. The PI has been exam-
ined in prior studies for estimating PLM severity [28, 29]. The 
prior literature indicates that the PI is a stable and accurate par-
ameter for PLM estimation [29]. Using the pre-abeling scheme 
described in the previous section, we grouped our feature data 
into mild vs. severe classes, which were then fed into a super-
vised Naïve–Bayes classifier [30]. The Naïve–Bayes algorithm can 
handle a random number of continuous or categorical (discrete) 

Figure 1.  Algorithm flowchart.
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variables, which makes it possible to reduce a high-dimensional 
feature-set into a simpler decision output [30]. For the reader’s 
reference, the Naïve–Bayes tool is a machine learning technique 
that uses training and testing feature sets to perform pattern 
classification of labeled data. In this study, rather than evenly 
distributing the individuals with mild and severe PLMS, we dis-
tributed them in a 70–30 ratio as this would help better train the 
machine learning tool.

We also conducted a multiclass classification study for 
estimating PLM indices in various ranges. Specifically, we labeled 
our data into four categories, namely: (1) 247 individual lower ex-
tremity signals with a PLM index < 15 movements per hour; (2) 61 
with a PLM index between 15 and 29.9 movements per hour; (3) 
16 with a PLM index between 30 and 49.9 movements per hour; 
and (4) 8 with a PLM index ≥ 50 movements per hour. The raw 
MatLab code for our proposed algorithm is available in the online 
Supplementary Material.

Finally, we report descriptive statistics on the general char-
acteristics, self-reported vascular risk factors, PSG parameters, 
and medications of our study sample, classified according to 
whether the individual patient had mild vs. severe PLMS (Table 

2). Categorical variables are displayed as counts (%) and are 
compared using chi-square analyses. The normality of con-
tinuous variables was assessed using the Shapiro–Wilk test. 
Normally distributed continuous variables are reported as mean 
± SD and were compared using t-tests. Non-normally distributed 
continuous variables are reported as median (range) and were 
compared using Mann–Whitney U tests.

Results
Table 2 displays the characteristics of our study population, clas-
sified as those with mild vs. severe PLMS. Patients with severe 
PLM indices (compared with those with mild PLM indices) were 
older, more likely to be male, and were also more likely to report 
having Restless Legs Syndrome (RLS) and diabetes. Moreover, 
patients with severe PLM indices had significantly greater wake 
after sleep onset (WASO) times and decreased stage N3 sleep. 
Finally, patients with severe PLM indices were more likely to 
be using antihypertensive, diabetic, and/or statin medications. 
There were no differences between the two groups in terms of 
use of lithium, serotonin-norepinephrine reuptake inhibitors, 

Table 2.   Characteristics of study participants

Study population 
(n = 166)

PLMI <15 per hour  
(n = 107)

PLMI ≥ 15 per hr 
(n = 59) P (two-tailed)

General characteristics
  Age in years, mean ± SD 57.4 ± 15.0 53.2 ± 15.4 65.1 ± 10.8 <.0001
  Male, n (%) 96 (57.8) 55 (51.4) 41 (69.5) .024
  BMI, median (range) 28.6 (27.0) 28.6 (27.0) 28.9 (19.3) .70
  Self-reported RLS, n (%) 31 (18.7) 13 (12.1) 18 (30.5) .004
Self-reported vascular risk factors
  Hypertension, n (%) 60 (36.1) 34 (31.8) 26 (44.1) .12
  Diabetes, n (%) 30 (18.1) 14 (13.1) 16 (27.1) 0.024
  Prior stroke, n (%) 23 (13.9) 12 (11.2) 11 (18.6) .19
  Irregular heartbeat, n (%) 32 (19.3) 18 (16.8) 14 (23.7) .28
Polysomnography parameters
  TST in minutes, median (range) 293.3 (452.0) 304.0 (445.5) 291.0 (367.5) .09
  SE, median (range) 72.9 (92.2) 74.4 (90.8) 71.2 (89.7) .06
  SOL in minutes, median (range) 14.8 (227.0) 14.5 (145.5) 15.0 (227.0) .26
  WASO in minutes, median (range) 87.3 (354.0) 68.0 (344.5) 101.0 (347.5) .035
  % of TST
  N1, median (range) 21.0 (90.7) 20.0 (90.7) 24.6 (60.6) .26
   N2, mean ± SD 48.7 ± 13.3 47.5 ± 13.1 50.8 ± 13.5 .12
  N3, median (range) 9.7 (54.3) 12.8 (54.3) 5.5 (41.5) .002
  REM, median (range) 12.4 (37.5) 11.4 (37.5) 14.0 (31.3) .33
  REML in minutes, median (range) 118.5 (435.5) 114.0 (384.5) 132.8 (402.0) .31
  AI, median (range) 25.6 (138.1) 24.7 (138.1) 29.6 (115.6) .97
  AHI, median (range) 3.1 (98.4) 3.3 (98.4) 2.8 (70.7) .77
  Mean SaO2, median (range) 95.0 (34.0) 96.0 (34.0) 95.0 (12.0) .17
  Lowest SaO2, median (range) 89.0 (51.0) 90.0 (51.0) 88.0 (26.0) .25
  PLMI, median (range) 3.6 (175.3) 0.0 (14.3) 41.6 (154.3) <.0001
Medications
  Antihypertensive medication, n (%) 73 (44.0) 41 (38.3) 32 (54.2) 0.048
  Diabetes medication or insulin, n (%) 29 (17.5) 13 (12.1) 16 (27.1) .015
  Statin, n (%) 60 (36.1) 30 (28.0) 30 (50.8) .003
  SSRI, SNRI, TCA, or lithium, n (%) 35 (21.1) 20 (18.7) 15 (25.4) .31

p-Values of < .05 are bolded.

AHI = apnea–hypopnea index; AI = arousal index; BMI = body mass index; REML = REM latency; PLMI = periodic limb movements index; SaO2 = arterial oxygen satur-

ation; SE = sleep efficiency; SNRI = serotonin-norepinephrine reuptake inhibitor; SOL = sleep onset latency; SSRI = selective serotonin reuptake inhibitor; TCA = tri-

cyclic antidepressant; TST = total sleep time.

Categorical variables are reported as counts (%) and were compared using chi-square analyses. The normality of continuous variables was assessed using the 

Shapiro–Wilk test. Normally distributed continuous variables are reported as mean ± SD and were compared using t-tests. Non-normally distributed continuous vari-

ables are reported as median (range) and were compared using Mann–Whitney U tests.
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selective serotonin reuptake inhibitors, or tricyclic antidepres-
sant medications.

From the previously described feature extraction scheme, 
we obtained 14 features for all the 332 limb signals. This fea-
ture set was then split into 70% training and 30% testing subsets. 
Using these subsets, we modeled a Naïve–Bayes classifier for 
identifying mild and severe limb signals. The Naïve–Bayes tool 
yielded a high classification rate of 89% along with a sensi-
tivity of 87.9% and specificity of 94.1%. The high accuracy of the 
Naïve–Bayes classifier for estimating the severity of PLMS and 
classifying a limb signal was further verified by cross-validating 
our results using the leave-one-out cross validation method. 
Additionally, we also benchmarked the Naïve–Bayes classifica-
tion results with a linear discriminant analysis (LDA) classifier 
[31]. Table 3 highlights our classification results.

When we modeled a Naïve–Bayes and a LDA machine learning 
tool to train and classify four PLM classes (i.e. PLM index < 15, 
between 15 and 29.9, between 30 and 49.9, and ≥50 movements 
per hour), we obtained fairly high classification accuracies of 
85.8% and 78.5%, respectively. Additional classification details 
are recorded in Table 4. These results further demonstrate that 
the proposed actigraphy analysis algorithm is robust and can be 
extended for use with multiclass classification.

Additionally, as shown in Figure 2, we also plotted the period-
icity indices for all 332 signals against their respective standard 
deviation and signal-to-noise-and-distortion ratio (SNDR) 

values and observed that the PI was the most significant feature 
[28] for classifying test subjects based on their PLM severities. In 
addition, the PI showed a higher degree of variance in the lower 
extremities with the severe PLM indices. It should also be noted 
that the computation of these 14 features from each 6 to 8 hr 
long signal was not tedious and only took about 10 s per signal 
when the algorithm was executed on a Windows 7 computer.

The classification performance of the Naïve–Bayes classifier 
was also verified by plotting its receiver operating curve (ROC) 
and comparing the area under curve (AUC) to the LDA classi-
fier. As evident from Figure 3, the AUC of the Naïve–Bayes was 
higher than the LDA classifier, which indicated better classifica-
tion performance.

Discussion
Although several prior studies have examined the use of 
actigraphy to detect PLM severity [9–14, 32, 33], very few 
studies have examined the use of advanced signal processing 
methods [18, 21–24] and most studies to-date have relied on 
basic statistical techniques such as Pearson’s correlation co-
efficients, t-tests, and Bland–Altman plots in their compari-
sons against PSG. Moreover, prior studies employing signal 
processing techniques measured their outcomes on shorter 
signals [18, 21–24]. It should be noted that our study did not 
exclude patients using certain medications or exclude those 
suffering from untreated sleep disordered breathing, as was 
done in other studies [12, 13]. We also did not need to clip our 
actigraphy signals, further lending support to the ease of this 
novel approach.

In contrast to our prior work [9], wherein we were able to per-
form an event-by-event comparison between the annotated PSG 
and actigraphy signals, in this study, considering the amount of 
actigraphy data acquired for each patient, we did not conduct an 
event-based comparison since this would have required exten-
sive usage of sleep hypnogram data to identify different sleep 
stages. This would have been a tedious approach and would 
have negated the goal of conducting an intelligent, automated 
analysis of sleep actigraphy data. The intention of this study was 

Table 3.    Results for classifying PLM index less than or greater 
than 15

Classifier Accuracy (%) Sensitivity (%) Specificity (%)

Naïve-Bayes 89.6 87.9 94.1
LDA 89.2 87.3 100

Table 4.   Results of multiclass classification

Classifier Accuracy (%) Sensitivity (%) Specificity (%)

Naïve–Bayes 85.8 97.6 84.8
LDA 78.5 86.1 84.6

Figure 2.  Plot of periodicity index vs. standard deviation and signal-to-noise 

distortion.

Figure 3.  Receiver operating curves for Naïve–Bayes and linear discriminant 

analysis classifiers.
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to explore the utility of actigraphy as a screening tool to identify 
the severity of PLMS in an ambulatory setting.

Although our signal property tests confirmed the nonstationary 
nature of actigraphy data, our results demonstrated that it is 
possible to classify PLMS based on their severity using time and 
frequency domain features. This is evident from the high classi-
fication accuracies shown in Tables 3 and 4. Also, the technique 
proposed in this study can be applied to any actigraphy device 
as it is able to capture vital movement information which occurs 
in the frequency range of 0.3 to 6 Hz. This suggests that the pro-
posed algorithm, in conjunction with our previous study [9], could 
be transformed into a generic accelerometry-based screening 
tool capable of identifying PLM severity across a wide spectrum 
of patient populations. Moreover, the Model X16 [27] is quite af-
fordable, costing only about $100 USD, which suggests that using 
a generic wearable device for screening PLMS could be a poten-
tially cost-effective approach compared with PSG.

Future work should be performed to validate the proposed 
algorithm using other actigraphs. Moreover, in addition to ad-
dressing the uniformity of the data set, through the availability 
of equal numbers of mild and severe cases, in the future we 
would also like to investigate the subclassification of different 
severities of PLMS. Future work can also explore the actigraphic 
correlates of PLMS presumed to be generated by different 
underlying etiologies (e.g. RLS, medications, and stroke). The 
validation and implementation of accelerometer-based sensors 
(such as actigraphy) has the potential to promote further home-
based sleep monitoring devices and applications. Furthermore, 
we intend to take this study further by developing a pub-
licly available, web-based application (Figure 4) that accepts 
actigraphy data as input and generates a PLM severity-based 
parameter based on the signal analysis conducted by our pro-
posed algorithm.

Conclusion
In summary, we provide a novel algorithm that can accurately 
detect PLMS from any actigraph. Given that the actigraphs 

available at any time on the market are rapidly changing, our 
proposed device-independent algorithm has the potential to fa-
cilitate our understanding of the clinical significance of PLMS 
without needing to be constrained to any specific actigraphy de-
vice and provides the opportunity to study PLMS in the ambula-
tory setting across multiple nights of sleep.

Supplementary Material
Supplementary material is available at SLEEP online.
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